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a b s t r a c t

Most Li ion insertion batteries consist of a porous cathode, a separator filled with electrolyte and an
anode, which very often also has some porous structure. The solid part especially in the cathode is usually
produced by mixing a powder of the actual active particles, in which Li ions will be intercalated, binder
and carbon black to enhance the electronic conductivity of the electrode. As a result the porous structure
of the electrodes is very complex, leading to complex potential, ion and temperature distributions within
the electrodes. The intercalation and deintercalation of ions cannot be expected to be homogeneously
distributed over the electrode due to the different transport properties of electrolyte and active particles
in the electrode and the complex three-dimensional pore structure of the electrode. The influence of the
final microstructure on the distribution of temperature, electric potential and ions within the electrodes
is not known in detail, but may influence strongly the onset of degradation mechanisms. For being able
to numerically simulate the transport phenomena, the equations and interface conditions for ion, charge
and heat transport within the complex structure of the electrodes and through the electrolyte filled
separator are needed. We will present a rigorous derivation of these equations based exclusively on
general principles of nonequilibrium thermodynamics. The theory is thermodynamically consistent i.e.

it guarantees strictly positive entropy production. The irreversible and reversible sources of heat are
derived within the theory. Especially the various contribution to the Peltier heat due to the intercalation
of ions are obtained as a result of the theory.
Research highlights: � Thermodynamic consistent transport theory for Li ion batteries � Derivation of
all irreversible and reversible heat sources in Li ion batteries � Closed set of equations for ion, charge
and heat transport in Li ion batteries � Theory of Peltier heat for Li ion intercalation � Microstructure

ous e
resolved transport in por

. Introduction

Understanding the heat generation and temperature distribu-
ion in Li ion battery cells is of great practical interest. Many
egradation processes in Li ion batteries are caused by and most
f them are enhanced under temperature increase [1,2]. Thermal
unaway may begin as a very local phenomenon by initiating an
xothermal reaction at a local hotspot. Therefore the average tem-
erature of a cell is not sufficient to determine the beginning of
thermal runaway. A spatially resolved mathematical description
f the processes on the scale of the cell would allow to simulate
he behavior of the cell under varying operating conditions and to
etect the probability of dangerous hotspots.
Mathematical modeling of Li-ion batteries on cell resolved level
as pioneered by the work of Newman and his coworkers [3–5]

nd extended and refined by many other authors [6–8]. The mod-
ling approaches are based on transport equations for Li ions and

∗ Corresponding author. Tel.: +49 631 316004301; fax: +49 631 316005301.
E-mail address: Arnulf.Latz@itwm.fraunhofer.de (A. Latz).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.11.088
lectrodes
© 2010 Elsevier B.V. All rights reserved.

charges in the electrolyte as well as in the active particles of cathode
and anode under isothermal conditions. Most modeling approaches
for the thermal behavior of batteries are concentrating on overall
thermal balance equations for a whole cell [9–14] by combining
phenomenologically thermodynamic considerations on entropy or
enthalpy changes within a cell with reasonable assumptions on
out of equilibrium processes like Joule heating, heat of mixing,
Peltier effect and Soret effect. An approach based on local continu-
ity equations for the temperature was presented in [15], extending
previous work on species and charge transport in batteries [16].
These authors focused on deriving macroscopic equations for the
heat transport in porous electrodes using the volume averaging
technique. The microscopic equation for the temperature was for-
mulated without considering possible changes of the transport
equations describing species and charge transport. Also the inter-
face conditions have not been derived. Fully coupled models have

been considered for battery stacks [17] and other types of batter-
ies (see e.g. [18,19]). Also in these cases the equations were not
derived but formulated as balance equations in which known phys-
ical effects as well as the reaction kinetics for all relevant chemical
reactions were phenomenologically incorporated.

dx.doi.org/10.1016/j.jpowsour.2010.11.088
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:Arnulf.Latz@itwm.fraunhofer.de
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A different approach to treat transport in electrochemical
ystems is the systematic approach of nonequilibrium thermo-
ynamics [20] pioneered by Landau [21,22]. In this approach
nly conservation equations and general principles of statistical
echanics were used to derive the general form of the relevant

ransport equations. Only measurable quantities like thermody-
amic derivatives and transport coefficients enter the equations.
he Onsager relations which guarantee the positivity of the entropy
roduction and impose strict relations between the equations for
ensities, charges and temperature, play a central part in the
erivation. Chemical reactions can easily be treated within this
ormalism [20]. The interface conditions can also be derived by
ecessary continuity constraints (as e.g. conservation of charges,
nergy, etc.) and considering the physical and chemical pro-
esses within the interface [20]. Contrary to the phenomenological
pproaches the terms contributing to the heat production are
ystematically derived using nothing else but generally valid ther-
odynamic relations and total energy conservation, instead of just

hysical intuition and experimental experience. In this manner it
s made certain that no source of heat is neglected, if all hydrody-
amic variables and all relevant chemical reactions are taken into
ccount.

An especially elegant form of this formalism was recently used
o derive a hydrodynamic theory of electromagnetic field in con-
inuous media [23–26], which can also be applied to charged
nd magnetic liquids [27]. Also charge and species transport in
i ion batteries can be dealt with using the nonequilibrium ther-
odynamics framework [28]. We will derive in the following the

omplete set of equations including all interface conditions for the
on, charge and thermal transport in Li ion battery cells. We will
onsider a spatial scale L which is large compared to the scale LDL of
he diffuse double layer (i.e. L � LDL ∼10–20 nm [4]). Concentrated
lectrolytes are neutral on this scale due to the strong Coulomb
nteractions between the ions leading to an extremely small Debye
creening length. Only in the double layer around the active parti-
le, which usually have diameters on micrometer scale, potential
radients are strong enough to cause charge separation [4]. Also
ctive particles fulfill charge neutrality although the mechanism
or obtaining charge neutrality is very different. In active particles
t is the large mobility of electrons which guarantees charge neu-
rality. The charge of an inserted Li ion is instantaneously shielded
y local rearrangements of electronic charges and the transport of
lectrons into the active particles over the current collectors. In the
lectrolyte charge neutrality will lead to highly correlated motion
f negative and positive ions. We will make explicit use of charge
eutrality in the derivation of our equations.

In addition to naturally reducing the numbers of relevant
quations, the use of charge neutrality also guarantees, that the
ransport coefficients appearing in theory are the measurable quan-
ities of the electrolyte. Let us for example consider the diffusion
rocesses in a molten salt consisting of positive and negative ions.

n general the self-diffusion coefficients are different for the two
inds of ions. If there were no interaction between the ions, we
ould expect to obtain free electric charges in relaxation processes
ven if the initial perturbation were neutral due to the different
iffusion length of the ions. In reality the strong Coulomb interac-
ion between the ions prevents the appearance of free charges. The
rocess relevant for diffusion is in fact the collective interdiffusion
rocess with a uniquely defined interdiffusion coefficient for both
pecies. This unique quantity for positive and negative ions will
ppear naturally in our theory.
To derive the transport equations in the electrolyte and the
olid particles we use a general and rigorous theory for polarizable,
onducting media introduced in [23] and generalized in [24]. The
heory is based on general thermodynamic principles, Maxwells
heory for electromagnetic fields and Onsagers reciprocal relations.
ources 196 (2011) 3296–3302 3297

Although transport mechanisms in active particles and electrolyte
can be very different on the microscopic (atomic) scale, their macro-
scopic form just differ in the functional dependencies and the size
of the transport coefficients. For example in active particles charge
is transported mainly by pure electronic conduction. The contri-
bution of the ion diffusion in the active particles to the electric
current can be neglected due to the large mobility of the electrons
compared to the ions. Charge transport in the electrolyte on the
other side is exclusively due to ionic transport. In fact the transfer
of electrons into the electrolyte would result in the reduction of Li
ions in the electrolyte to metallic lithium and is considered to be
one of the many degradation mechanisms in Li ion batteries [1].
Macroscopically, the differences in the microscopic charge trans-
port mechanisms are reflected in different functional dependencies
of the charge conductivity coefficients on temperature and Li ion
concentration. The ionic conductivity in the electrolyte is usually
strongly dependent on the concentration of Li ions. The electronic
conductivity of the active particles is basically not affected by it and
can be assumed to constant. In addition, the transference number
of ions in active particles is approximately zero due to the vanishing
contribution of ion diffusion to the electrical current.

2. Model

Originally the theory of Henjes and Liu [23] was used to derive
the hydrodynamic equations for a one component polarizable liq-
uids. But the principles can easily be applied to a mixture of a
dissociating salt and a solvent i.e. for a generic electrolyte as used
in batteries. The reduction to the transport in the solid particle is
straight forward after the full set of equations for the electrolyte
are derived. Although we have to deal with a at least three compo-
nent system of positive and negative ions as well as neutral solvent
molecules, the problem can be reduced to an effective one com-
ponent problem using two constraints, which are applicable to
the physical situation of a concentrated electrolyte in a battery.
The first observation is that convective transport is highly unlikely
under normal operating conditions in a battery. We therefore may
safely assume that the center of mass of any hydrodynamic vol-
ume element is at rest. This assumption allows to eliminate the
concentration of the neutral solvent as independent variable. With
M0, M+, M− being the molar masses of solvent and positive and
negative ions respectively we get in the absence of convection the
relations:

M0dc0 + M+dc+ + M−dc− = 0 (1)

for the changes in the respective concentrations.
The second observation concerns the occurrence of finite free

charges in a volume element. It can easily be estimated [4] that
the electric fields which where necessary to impose charge sep-
aration on a micrometer scale are much bigger than the average
fields present in a battery. Charge separation is only observed in
the double layer around active particles on a scale of the order
of 10–20 nm. The present theory will be restricted to scales above
100 nm. A detailed theory for the linear and nonlinear phenomena
in the double layer can be found in [29,30]. If we denote molar con-
centrations of positive and negative ions of charge z+ and z− with
c+ and c−, respectively, charge neutrality requires

�+z+c+ + �−z−c− = 0 (2)

where �+, �− are the stoichiometric numbers of positive and
negative charges. It is therefore sufficient to determine the trans-

port equations for the concentration c = c+ = − (�−z−/�+z+)c−. For
notational simplicity we restrict our theory to a binary salt with
�+ = �− = 1 and consequently z− = − z+ as well as

c+ = c−. (3)
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he fundamental thermodynamic relation for a polarizable system
n an external electromagnetic field is given by [23]

e = Tds + �+dc+ + �−dc− + �0dc0 + �E · d �D + �H · d�B (4)

ere e, s, �i are the energy density, entropy density and the
hemical potential of species i. �E, �D, �B, �H are electric field, electric
isplacement, magnetic induction and magnetic field, respectively.
sing (1) and (3), Eq. (4) reduces to

e = Tds + �dc + �E · d �D + �H · d�B (5)

here c ≡ c+ is the concentration of Li-ions and the effective chem-
cal potential � of the lithium ions is given by

= �+ − M+
M0

�0 − z+
z−

(
�− − M−

M0
�0

)
(6)

For a binary charge neutral salt this reduces to

= �+ + �− − M− + M+
M0

�0 (7)

The next building blocks are the conservation equation for con-
entration of Li ion, charge density �el, entropy as well as the
axwell equations. Note that the macroscopic velocity is set to

ero, due to the main assumption of convection free transport in Li
on batteries. The equation for �el is obtained from the conservation
quations of ions:

∂c+
∂t

= − �∇ · �N+ (8)

∂c−
∂t

= − �∇ · �N− (9)

ere �N+, �N− are the fluxes (i.e. the number of moles per unit time
nd unit area) of the positive Li ions and the negative counter ions,
espectively. Using (3) we obtain with �el = z+c+ + z−c− and the def-
nition of the electric current �j = z+ �N+ + z− �N−:

∂�el

∂t
≡ 0 = − �∇ · �j (10)

From the Maxwell equation follows:

� · ∂t
�D + �H · ∂t

�B = − �∇ · (�E × �H) −�j · �E (11)

The general form of the entropy equation is given by

ts = − �∇ ·
(

�q
T

)
+ R

T
(12)

ere �q is the heat flux. The entropy production R can be derived by
ombining the first law (5) and the conservation of the total energy.
rom the first law (5) we obtain:

te = T∂ts + �∂tc + �E · ∂t
�D + �H · ∂t

�B (13)

ith (8), (11) and (12), Eq. (13) transforms into

te = − �∇ · (�q + �N+� + �E × �H) + R + �q ·
�∇T

T
−�j · �E + �N+ · �∇� (14)

ue to the conservation of total energy the change in the local
nergy has to fulfill a continuity equation i.e.:

te = − �∇ · �Je (15)

y comparing (14) and (15) we obtain the entropy production R as

�

= −�q · ∇T

T
− �N+ · �∇� +�j · �E (16)

The entropy production has to be strictly positive or zero. This
equirement imposes strong constraints on the constitutive rela-
ions for the fluxes �q, �N+ and �j. Since the chemical potential is
ources 196 (2011) 3296–3302

difficult to measure it is more convenient to work with c, T and
�E as independent variable. We therefore rewrite Eq. (16) as

R = − �Q ·
�∇T

T
−

(
∂�

∂c

)
�N+ · �∇c +�j · �E (17)

with �Q = �q + �N+T(∂�/∂T). The expression for the entropy
production defines the independent thermodynamic fluxes
�Q/T, (∂�/∂c) �N+ and �j, for which constitutive equations have to be
formulated. In order to guarantee positiveness of the entropy pro-
duction R, the constitutive equations have to be chosen such, that
the expression for R (17) is a positive definite binary form. The most
general expression for the fluxes is therefore given by

⎛
⎜⎜⎜⎜⎝

−
(

∂�

∂c

)
�N+

�j

−
�Q
T

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
∂�

∂c

)
˛ −

(
∂�

∂c

)
�t+
Fz+

(
∂�

∂c

)
�

−
(

∂�

∂c

)
�t+
Fz+

� −ˇ�

(
∂�

∂c

)
� −ˇ�

�

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎝ �∇c

�E
�∇T

⎞
⎠ (18)

The symmetry of the Onsager matrix in Eq. (18) is necessary for
the positiveness of the entropy production and a consequence of
fundamental principles of nature [20]. The physical meaning of the
various transport coefficients ˛, �, � , ˇ, �, t+ is getting more obvious
after transforming equivalently the constitutive equations into the
more traditional form:

�N+ = −D �∇c + t+
z+F

�j − D c kT

T
�∇T (19)

j = ��E − �
t+

z+F

(
∂�

∂c

)
�∇c − ˇ� �∇T (20)

�Q = −� �∇T + ˇT�j + kT c

(
∂�

∂c

)(
�N+ − t+

z+F
�j
)

(21)

In this form the entropy production has the simple form:

R = �
( �∇T)

2

T
+

�j2
�

+
(

∂�

∂c

)
( �N+ − (t+/Fz+)�j)2

D
(22)

In order to be positive each term in the expression (22) has to be
positive i.e. the heat conductivity �, the electric conductivity � and
the interdiffusion coefficient D have to be positive.

Eq. (20) can also be expressed using the electrochemical poten-
tial ϕ = �/(z+F) + 
, where 
 is defined by �E = − �∇
:

j = −� �∇ϕ − �
t+ − 1

z+F

(
∂�

∂c

)
�∇c −

(
ˇ − 1

z+F

(
∂�

∂T

))
� �∇T (23)

The electric conductivity � in the electrolyte is a pure ionic conduc-
tivity. In addition to the ionic conductivity, the transference number
t+ of Li ions and the Seebeck coefficient ˇ are the relevant transport
coefficients for the electric current. The transference number also
appears in the relation for the ionic flux �N+ and determines the
amount of ion flux contributed by the electric current. The Seebeck
coefficient has the units V K−1 and is related to the Peltier coef-
ficient � by � = Tˇ. It quantifies the thermoelectric effect in the

electrolyte or the active particles. The Seebeck coefficient can in
principle be positive or negative.

The two additional transport coefficients relevant for the ionic
flux are the inter diffusion coefficient D and the Soret coefficient
kT. The interdiffusion coefficient D, appearing in the relation for the
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onic flux �N+, is measured in the limit of zero electrical current and
ero temperature gradient. It is given by

= ˛ −
(

∂�

∂c

)
�
(

t+
Fz+

)2
(24)

ince D has to be positive the Onsager coefficient ˛ and the trans-
erence number fulfill an obvious inequality relation. The Soret
oefficient kT quantifies thermodiffusional processes and is given
y

D c kT

T
= � − �

ˇt+
Fz+

(25)

Usually the Soret coefficient is of order 0.6–1.5 [31], but the over-
ll size of the Soret effect is believed to be very small in liquids
nd electrolytes [32]. Therefore the ion flux induced by tempera-
ure gradients is neglected compared to the one caused by electric
urrents and gradients in concentrations.

The last transport coefficient is the thermal conductivity � mea-
ured in the limit of vanishing electric current and vanishing ionic
ux. It is given by

= � −
(

∂�

∂c

)
D

T
(kT c)2 − �Tˇ2 (26)

t also has to be strictly positive in order to guarantee positive
ntropy production R.

.1. Heat transport

The equation for the temperature can be derived from the
ntropy balance (12) and the expression for the entropy production
17) and the relation:

∂ts = cp�∂tT + T
∂s

∂c
|T ∂tc (27)

here cp and � are the specific heat per unit mass and the mass
ensity of the electrolyte or the active particles. Using the thermo-
ynamic relation ( ∂ s/∂ c) | T = −(∂ �/∂ T) | c and the continuity Eq. (8)
e obtain:

p�∂tT = − �∇ · �q − �N+ · �∇� +�j · �E − T

(
∂�

∂T

)
�∇ · �N+ (28)

ransforming from the original heat flux �q to the renormalized heat
ux �Q we get

p�∂tT = − �∇ ·
(

�Q − T �N+

(
∂�

∂T

))
−

(
∂�

∂c

)
�N+ · �∇c

−
(

∂�

∂T

)
�N+ · �∇T +�j · �E − T

(
∂�

∂T

)
�∇ · �N+ (29)

he third and last term on the right hand side of Eq. (29) are can-
elled by the first one on the right hand side, if we neglect the
patial variation of the thermodynamic derivative ( ∂ �/∂ T). The
emperature equation is therefore given by

p�∂tT = − �∇ · �Q −
(

∂�

∂c

)
�N+ · �∇c +�j · �E (30)

sing the constitutive relations (19)–(21), Eq. (30) can be trans-
ormed into
p�∂tT = �∇ · (� �∇T) +
�j2
�

− T �∇ · (ˇ�j) +
(

∂�

∂c

)
( �N+ − (t+/Fz+)�j)2

D

− T �∇ ·
(

c

(
∂�

∂c

)
kT

T
( �N+ − t+

z+F
�j)
)

(31)
ources 196 (2011) 3296–3302 3299

The temperature changes due to thermal conduction and four dif-
ferent sources for heat. They are in the order of their appearance
in Eq. (31): Joule’s heat, Thompson effect, heat of mixing and the
Soret effect. The Thompson effect can also be written as

T �∇ · (ˇ�j) = T
∂ˇ

∂T
�j · �∇T := �T

�j · �∇T (32)

Here we used charge conservation (Eq (10)) and the Thompson rela-
tion for the Thompson coefficient �T = T( ∂ ˇ/∂ T). If we neglect all
contributions proportional to kT the heat Eq. (31) reduces further
to

cp�∂tT = �∇ · (� �∇T) +
�j2
�

− T �∇ · (ˇ�j) +
(

∂�

∂c

)
D( �∇c)

2
(33)

The equations for ion concentration, electric field respective electric
potential defined by �E = − �∇
 and temperature can be applied in
the electrolyte as well as in the active particles. The only difference
is the electric conductivity, which is replaced by the average elec-
tronic conductivity � of the solid active particle and carbon black,
which is usually used to enhance the electronic conductivity of the
electrodes.

2.2. Interface conditions

To couple the transport in electrolyte and active particles we
have to formulate interface conditions, which describe the interca-
lation and deintercalation of ions.

2.2.1. Interface conditions for ionic flux and electric current
The interface conditions describe the intercalation reaction and

the deintercalation reaction respectively on the mesoscopic scale
(i.e. beyond the scale of the diffuse layer [4]). For one step reactions
it is usually assumed that the transport of ions across the interface
is completely described by the Butler Volmer approach. More com-
plicated reactions may require the use of more elaborate theories
[33], which can be easily incorporated within our theory. Here we
use for simplicity the Butler Volmer theory. The current density
across the interface ise due to the intercalation reaction is within
the Butler Volmer approach given by [4]:

ise = i0

(
exp

[
˛aF

RT

s

]
− exp

[−˛cF

RT

s

])
(34)

˛A and ˛C with ˛A + ˛C = 1 are weighting the anodic and the cathodic
contribution of the overpotential 
s to the overall reaction. The
overpotential is the deviation of the electrochemical potential from
the chemical equilibrium between active particle and electrolyte.
It is therefore defined by


s := 
s − 
e − �e − �s

z+F
(35)

The overpotential vanishes obviously if the active particle is in equi-
librium with the electrolyte. Usually the overpotential is expressed
with the help of the half cell open circuit potential U0 of the
respective electrode relative to a Li metal electrode. Without loss
of generality setting 
Li = 0, the open circuit potential U0 can be
written as

U0 = �Li − �s

z+F
(36)

Using this expression in Eq. (35) we get

s := 
s − 
e − U0 − �e − �Li

z+F
(37)

Since the chemical potential of the electrolyte �e is very different
from the chemical potential �Li of the Li metal electrode the last
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wo terms in Eq. (37) do not cancel in general. Introducing the elec-
rochemical potential of the electrolyte ϕe relative to the chemical
otential of Li - metal

e := 
e + �e − �Li

z+F
(38)

e can rewrite (37) as

s := 
s − ϕe − U0 (39)

nd obtain the standard form of the overpotential but with the
lectrochemical potential instead of the electric potential.

The amplitude i0 in Eq. (34) is given by

0 = kc˛a c˛a
s (cs,max − cs)˛c (40)

is a reaction rate. cs,max is the maximum concentration of ions in
he active particle. We assume that Li ions are not stored in the
ouble layer (i.e. all Li ions are intercalated in the active particle
r released into the electrolyte). There should also be no flux of
egative charges across the double layer. Neither enter electrons
he electrolyte nor intercalate negative ions from the electrolyte in
he active particles under ideal conditions. Both effects would lead
o degradation [1], which could of course be modeled by modifying
he interface conditions. The absence of flux of negative charges
cross the interface especially means that the total current across
he electrolyte–particle interface is due to transport of positive ions
nly. If the particle is completely filled i.e. c = cs,max, it has to be made
ure by the interface conditions that no electrical current�j is carried
y negative charge carriers across the interface. These conditions
an be formulated mathematically in the following way with the
ormal �n pointing from the solid into the electrolyte:

s · �n = ise (41)

e · �n = ise (42)

�+,s · �n = ise

z+F
(43)

�+,e · �n = ise

z+F
(44)

.2.2. Thermal interface conditions
To derive the thermal interface conditions we consider a

nfinitesimally extended small piece of the interface perpendicu-
ar to the normal �n which points from the active particle into the
lectrolyte. The interface conditions are most conveniently derived
sing the form (28) of the heat transport equation. We integrate the
emperature balance equation over the infinitesimal small volume
lement, which contains the whole thickness of double layer. The
erm proportional to �∇ · �N+ does not contribute to the flux since the
ux is conserved across the double layer (see Eq. (43)). We obtain∫ ∫

dVcp�∂tT =
∫ ∫

dA(�n · (�qs − �qe) + �n · �N+(�s − �e)

+ �n · �j(
s − 
e)) (45)

sing Eqs. (41) and (43) and the definition of �Q we obtain∫ ∫
dVcp�∂tT =

∫ ∫
dA(�n · ( �Qs − �Qe))

+ ise

z+F
(�s − �e + z+F(
s − 
e))

− ise T

(
∂�s − ∂�e

)
(46)
z+F ∂T ∂T

If we assume that the double layer instantaneously changes
emperature upon changes of the currents, concentrations and tem-
eratures, the double layers is always in a stationary state i.e. the
ources 196 (2011) 3296–3302

left hand side of Eq. (46) vanishes. Using Eqs. (36) and (38) we
obtain:

�n · ( �Qs − �Qe) = −ise
s − iseT
∂U0

∂T
− ise

z+F
T

∂(�e − �Li)
∂T

(47)

Neglecting the temperature dependence of the chemical potential
of Li metal and using the constitutive relation for �Q Eq. (21) we
finally obtain:

−�s �n · �∇Ts + �e �n · �∇Te

= −ise
s − Tise

{
(ˇs − ˇe) + ∂(U0 + �e/(z+F))

∂T

}

+ ise

(
cs

∂U0

∂c
kT,s + ce

∂�e

∂c

kT,e(1 − t+)
z+F

)
(48)

Here we also used that the transference number of Li ions in the
active particle may be neglected due to the high mobility of elec-
trons compared to the mobility of Li ions. The physical meaning of
the various expressions on the right hand side of Eq. (48) is obvi-
ous. The first one is the irreversible heat production due to Joule
heating. The next term contributes to the reversible Peltier effect
and the last one is the Soret effect in the double layer. The Peltier
coefficient is given by

� = T(ˇs − ˇe) + T
∂(U0 + �e/(z+F))

∂T
(49)

Note that in [11] only the partial derivative of the open circuit
potential was given as Peltier coefficient. Our rigorous approach
shows naturally that also the differences in the Seebeck coefficients
of the two phases and the thermal derivative of the electrolytes
chemical potential are contributing to the Peltier coefficient. Since
our approach is based on experimentally accessible transport
coefficients it is either possible to measure directly the Peltier coef-
ficient [34] or to deduce it from measurements of the open circuit
potential, the Seebeck coefficients of the two phases [35] and the
thermodynamic derivatives of the chemical potential of the elec-
trolyte.

2.3. Closed set of equations for transport in batteries

2.3.1. Electrolyte
The natural variables for the electrolyte are the ion concentra-

tion c, the electrical potential 
e and the temperature T. Due to
the experimentally motivated formulation of the interface con-
ditions with the open circuit potential U0 relative to a Li metal
electrode instead of the difference between chemical potentials
of solid particle and electrolyte the electrochemical potential ϕ
(see Eq. (38)) had to be introduced. It is therefore more conve-
nient to formulate the transport equations with ϕe insteadt of 
e.
One has to keep in mind that the electric field is still given by
�E = − �∇
e = − �∇ϕe + �∇�e/(z+F). The transport equations are then
given by

∂tce = �∇ · (De
�∇ce) − �∇ ·

(
t+

z+F
�j
)

+ �∇ ·
(

D ce kT

T
�∇T

)
(50)

0 = �∇ · (� �∇ϕe) − �∇ · (�
1 − t+

z+F

(
∂�

∂c

)
�∇ce)+

+ �∇ · (�(ˇe − 1
z+F

(
∂�

∂T

)
) �∇T)

(51)
cp,e�∂tT = �∇ · (�e
�∇T) +

�j2

�
− T �∇ · (ˇe

�j)+

+
(

∂�

∂c

) ( �N+ − t+
Fz+

�j)
2

De
− T �∇ ·

(
ce

(
∂�

∂c

)
kT,e

T
( �N+ − t+

z+F
�j)
) (52)
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ote that the first two equations without the terms proportional
o the temperature gradients have the form of the equations for
he concentrated electrolyte by Newman [4], but it is important
o realize that there exists an important quantitative difference.
n the concentrated electrolyte theory of [4] the potential in Eq.
51) is interpreted as the electrical potential 
e. In our theory
he electrical potential had to be replaced by the electrochemical
otential ϕe of the electrolyte, if we use the open circuit potential
elative to Li metal in the simple expression for the overpotential
q. (39).

.3.2. Active particles
Our derivation of the constitutive relations for concentration,

lectrical potential and temperature is based on general thermo-
ynamic principles and can therefore be applied equally to the
ransport in active particles. Only if the transport is anisotropical
he transport coefficients have to be replaced by tensorial quan-
ities. Here we restrict ourselves to active particles which behave
pproximately isotropic on the micrometer scale. The equations
re slightly simplified due to the reasonable assumption that the
ransference number can be set to zero, since the electrical current
s predominantly electronic of nature. We will denote the electronic
onductivity with �. The transport equations are then given by

tcs = �∇ · (Ds
�∇cs) + �∇ ·

(
D cs kT,s

T
�∇T

)
(53)

= �∇ · (� �∇
s) + �∇ · (ˇs� �∇T) (54)

p,s�∂tT = �∇ · (�s
�∇T) +

�j2
�

− T �∇ · (ˇs
�j) − z+F

∂U0

∂c

�N2+
Ds

+ Tz+F �∇ · (cs
∂U0

∂c

kT,s

T
�N+) (55)

ogether with the interface conditions (41)- (44) and (48) the com-
lete set of equations for transport in Li-ion batteries is formulated.
f course the equations have to be closed by using appropriate
oundary conditions, but this is standard procedure. They may
hange from application to application depending on how the cell is
oupled to the outside world. Especially different cooling procedure
ill require different boundary conditions either for the thermal
ux or the temperature itself. Also the coupling of the current
ollector to the electrodes will influence the choice of boundary
onditions.

. Conclusions

We have derived the complete set of transport equations on a
patial scale larger than the diffuse double layer in Li ion batteries.
ur derivation is based on general principles of nonequilibrium

hermodynamics, which guarantee thermodynamic consistency
nd especially strictly positive entropy production. The equa-
ions for transport in the electrolyte differ from the concentrated
lectrolyte theory of [4]. It can easily be shown [28], that the con-
entrated electrolyte theory of [4] violates the Onsager relations.
ut we have also shown above, that the coupled equations for
harge and species transport in Li ion batteries (neglecting heat
ransport) can be transformed in the form used in [3], [4], if in the
lectrolyte the pure electrical potential is replaced by the electro-
hemical potential in combination with the definition (39) for the
verpotential.
The complete set of equations can either be used to simulate
he transport within cells using a spatial representation of the elec-
rodes, which resolves the microstructure of the porous electrodes
r as a starting point to obtain a porous media representation of
he electrodes as in [15]. In the microscopic theory active particles
ources 196 (2011) 3296–3302 3301

and electrolyte are treated as separate media. So far this approach is
only used for simulating the ion and charge transport under isother-
mal conditions [36,37]. Inclusion of heat transport is planned as
future work. The computational complexity of the problem allows
only to simulate representative volume elements (REVs) of bat-
tery cells. But as post processing effective properties of the porous
electrode may be obtained as e.g. effective diffusion coefficients or
conductivities by numerically averaging over the REV. These quan-
tities may then be used for simulating the whole cell modeled with
the porous electrode model.

So far side reactions as e.g. formation of the solid–electrolyte
interface (SEI) or transport within a SEI have not been considered.
Within our approach it is straight forward to include those phenom-
ena. Surface reactions will lead to a modification of the interface
conditions. Transport within a SEI requires the addition of another
thermodynamic phase with appropriate transport coefficients [38].
Volumetric reactions require the inclusion of the reacting species
and the information on the reaction kinetics [20]. The derivation
of the transport equations will proceed along the same line as
shown above with the only difference that the concentrations of
the species are not conserved separately but just the sum of them.
In future work we will make extensive use of the model to obtain
a better understanding of the coupled transport phenomena and
their repercussions on the performance and lifetime of Li ion bat-
teries.
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Appendix A. List of symbols

�B magnetic induction
D diffusion constant
De,s diffusion constant in electrolyte or solid
�D electric displacement
�E electric field
F Faraday constant
�H magnetic field
M0, M± molar mass of solvent, Li ion and counterions
�N± flux of ions or counter ions (mol m−2 s−1)
�Q renormalized heat flux (see Eq. (17))
R entropy production (W m−3)
R universal gas constant (J K−1 mol−1)
T temperature
U0 open circuit potential
c Li ion concentration
c± concentration of Li ions and counter ions (mol m−3)
ce,s Li ion concentration in electrolyte or solid
cp specific heat per unit mass at constant pressure
e energy density (J m−3)
ise Butler Volmer flux
i0 scale of Butler Volmer flux
j electrical current
k Butler Volmer rate constant
kB Boltzmann constant
kT Soret–Dufour coefficient

�q heat flux (W m−2)
s entropy density (J m−3)
z± number of elementary charges per ion or counter ion
˛a,c apparent anodic and cathodic transfer coefficients
ˇ Seebeck coefficient (V K−1)
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ionic conductivity
heat conductivity (W K−1 m−1)
collective chemical potential of Li ions (see Eq. (6)

0, �± chemical potential of neutral, positive and negative phase
T Thompson coefficient (V K−1)

electrochemical potential of electrolyte
mass density (kg m−3)

el charge density (C m−3)
electronic conductivity
electrical potential
Peltier coefficient (V)
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